Fandom

Math Wiki

Radiație electromagnetică

1.029pages on
this wiki
Add New Page
Comments0 Share

Ad blocker interference detected!


Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.

Spectrul electromagnetic.png

Spectrul electromagnetic

Unde electromagnetice 1.png Unde electromagnetice 2.png Unde electromagnetice 3.png Unde electromagnetice 4.png Unde electromagnetice 5.png Unde electromagnetice 6.png Unde electromagnetice 7.png

Clasificarea undelor electromagnetice Edit

Undele (radiaţiile) electromagnetice pot fi grupate dup fenomenul care stă la baza producerii lor. Astfel , radiaţiile numite herţiene se datoresc oscilaţiei electronilor în circuitele oscilante LC sau în circuitele electronice speciale (cu cavităţi rezonante "). Prin transformarea energiei interne a oricărui corp în energie electromagnetică rezultă radiaţiile termice. Radiaţiile electromagnetice , numite radiaţiile de frânare , apar la frânarea brusc a electronilor în câmpul nucleului atomic.Radiaţiile sincrotron ( denumirea se datoreşte faptului că acest fenomen a fost pus în evidenţă la o instalaţie de accelerare a electronilor în câmp magnetic , numit sincrotron ) şi au originea în mişcarea electronilor într-un câmp magnetic .

Acestor grupe de radiaţii le corespund anumite domenii de frecvenţe. Cea mai uzual mprire a radiaiilor electromagnetice se face însă dup frecvena i lungime sa de undă în vid. Această împărţire cuprinde următoarele grupe :

1.Undele radio. Domeniul de frecven a acestor unde este cuprins ntre zeci de hertzi pn la un gigahertz ( 1GHz = 109 Hz ) , adic au lungimea de und cuprins ntre civa km pn la 30 cm . Se utilizeaz n special n transmisiile radio i TV. Dup lungimea de und se submpart n unde lungi (2 Km - 600 m ) , unde medii ( 600 - 100 m ) , unde scurte ( 100 - 10 m ) i unde ultrascurte ( 10 m - 1 cm ).

2.Microundele. Sunt generate ca i undele radio de instalaii electronice . Lungimea de und este cuprins ntre 30 cm i 1 mm . n mod corespunztor frecvena variaz ntre 109 -- 31011 Hz. Se folosesc n sistemele de telecomunicaii , n radar i n cercetarea stiinific la studiul propietilor atomilor , moleculelor i gazelor ionizate. Se submpart n unde decimetrice, centimetrice i milimetrice.

3.Radiaia infraroie. Cuprinde domeniul de lungimi de und situat ntre 10-3 i 7,810-7 m (31011-- 41014 Hz ). n general sunt produse de corpurile nclzite. n ultimul timp s-au realizat instalaii electronice care emit unde infraroii cu lungime de und submilimetric.

4.Radiaia vizibil. Este radiaia cu lungimea de und cuprins ntre aproximativ 7,610-7 m i 41014 m.

5.Radiaia ultraviolet. Lungimea de und a acestei radiaii este cuprins n domeniul 3,810-7 i 610- 10 m. Este generat de ctre moleculele i atomii dintr-o descrcare electric n gaze. Soarele este o surs puternic de radiaii ultraviolete.

6.Radiaia X ( sau Rntgen ) . Aceste radiaii au fost descoperite n 1895 de fizicianul german W. Rntgen. Ele sunt produse n tuburi speciale n care un fascicul de electroni accelerat cu ajutorul unei tensiuni electrice de ordinul zecilor de mii de voli , bombardeaz un electrod.

7.Radiaia . Constitue regiunea superioar ( 3 10 18 - 3 10 22 Hz ) n clasificarea undelor electromagnetice n raport cu frecvena lor. Sunt produse de ctre nucleele atomilor.

0001.ClasUndElMag.jpg

0002.ClasUndElMag.jpg

0003.ClasUndElMag.jpg

0004.ClasUndElMag.jpg

0005.ClasUndElMag.jpg

0006.ClasUndElMag.jpg

0007.ClasUndElMag.jpg

0008.ClasUndElMag.jpg

0009.ClasUndElMag.jpg

0010.ClasUndElMag.jpg

0011.ClasUndElMag.jpg

0012.ClasUndElMag.jpg

0013.ClasUndElMag.jpg

0014.ClasUndElMag.jpg

0015.ClasUndElMag.jpg

0016.ClasUndElMag.jpg

0017.ClasUndElMag.jpg

0018.ClasUndElMag.jpg

0019.ClasUndElMag.jpg

0020.ClasUndElMag.jpg

0021.ClasUndElMag.jpg

0022.ClasUndElMag.jpg

0023.ClasUndElMag.jpg

0024.ClasUndElMag.jpg

0025.ClasUndElMag.jpg

0026.ClasUndElMag.jpg

0027.ClasUndElMag.jpg


Inductia electromagnetica Edit

Unsprezece ani a cutat Faraday ( ntre 1820 i 1831 ) s descopere producerea curentului electric sub actiunea cmpului magnetic. Totul prea att de simplu , dar toate experimentele erau sortite eecului pentru c se raiona astfel : din moment ce apare un cmp magnetic n jurul unui curent electric , de ce nu apare i un curent electric ntr-un conductor plasat ntr-un cmp magnetic ? ntr-adevr , cmpul magnetic apare , n jurul unui curent electric , dar acesta este ntreinut printr-un consum de energie din exterior. n cazul n care plasm n repaus un conductor ntr-un cmp magnetic , nu se consum energie , deci nu poate s apar un curent electric.

Experiena crucial a lui Faraday , care prefigura transformatorul de mai trziu a fost efectuat n felul urmtor : pe un cilindru de lemn a nfurat doua bobine , una legat la un galvanometru ( B1 ) i alta la o baterie ( B2 ). n mod neateptat , n bobina B1 aprea un curent numai atunci cnd ntreruptorul K stabilea sau ntrerupea curentul prin B2. Semnalul aprut n B1 era slab , dar disprea chiar dac prin B2 circula curentul , deci exista un cmp magnetic ale crui linii treceau i prin B1. O alt observaie : curentul nregistrat n B1 avea un sens la nchiderea circuitului , dar i schimba sensul la ntreruperea curentului. O analiz atent a curentului din B1 , numit curent indus , a artat c la nchiderea circuitului , cnd se stabilete un cmp magnetic , sensul curentului indus este astfel , nct cmpul magnetic creat de el are sens invers cmpului generat de B2. Dimpotriv , la ntreruperea curentului , deci cnd cmpul magnetic dispare , sensul curentului este astfel , nct cmpul creat de el are acelai sens cu cel care dispare. Fenomenul astfel descoperit de Faraday a primit numele de inducie electromagnetic.

Natura luminii Edit

Un fapt incontestabil stabilit de experien este acela c lumina transport energie. Dar dup cum tim energia poate fi transportat n dou moduri : prin particule n micare , sub form de energie cinetic a acestor particule i prin unde , sub form de energie de deformare a unui mediu elastic , fr a avea un transport de mas. Sub care din aceste forme se va propaga lumina ?

Dup Newton , lumina este alctuit din particule materiale ce se propag n direcia razei luminoase cu viteze diferite n diferite medii transparente ( teoria corpuscular a luminii ). Dup Huygens, lumina constitue o perturbaie a unui mediu elastic special ( numit eter " ) , viteza de propagare a acestei perturbaii depinznd de asemenea de natura corpului transparent ( teoria ondulatorie a luminii ).

Considernd mai nti lumina ca o perturbaie a unui mediu elastic , fr a ne preocupa de tipul acestei perturbaii (dac este longitudinal , transversal , etc) putem prelua rezultatele ob;inute n studiul propagrii undelor la mecanic. Astfel s-a dedus c dac o und plan cade la suprafaa de separare a dou medii sub unghiul de inciden i , atunci pentru unda reflectat unghiul de reflexie este egal cu unghiu de inciden , iar pentru unda refractat unghiul de refracie r este diferit de unghiul de inciden.

Aadar cel dou concepii explic n moduri diferite legea refraciei ; una prin micorarea vitezei luminii intr-un mediu mai dens , cealalt prin creterea vitezei ntr-un mediu mai dens. Pentru a decide ntre aceste dou concepii au fost necesare msurtori directe ale vitezei luminii n diverse medii transparente. Astfel de msurtori au fost ncepute n a doua jumtate a secolului al XVIII-lea. Sunt numeroase , iar precizia lor a crescut mult cu timpul.

Prin aceste experiene s-a putut determina , pentru trecerea luminii din aer n ap c \frac{\nu_1}{ \nu_2} =
1,333. \! Pe de alt parte din msurarea unghiurilor se tia c sin i / sin r = 1,333. Aceste date experimentale nu sunt satisfcute de relaia , ci de relaia , obinndu-se astfel ctig de cauz pentru concepia ondulatorie a luminii , care prevede o reducere a vitezei n medii mai dense ( \nu_2 < \nu_1 \! ). Aceast concepie a aprut ca urmare a descoperirii fenomenelor de interferen i difracie nc de la sfritul secolului al XVII-lea. Ea a fost formulat schematic de ctre Huygens n 1690 i completat de ctre Fresnel la nceputul secolului al XIX-lea , care a elaborat teoria ondulatorie , potrivit creia lumina este o perturbaie a unui mediu elastic numit eter " i se propag sub forma unor unde transversale periodice , de frecven foarte mare. Existena eterului cosmic nu a putut fi dovedit. De altfel prin proprietile ce trebuia s le aib , acesta nici nu putea avea consisten fizic.

Dup descoperirea undelor electromagnetice n a doua jumtate a secolului al XIX-lea s-a dovedit c undele de lumin sunt unde electromagnetice i c efectele luminoase sunt produse de ctre cmpul electric al undei electromagnetice. Teoria electromagnetic nu putea explica ns unele fenomene cum ar fi , de exemplu , distribuia dup lungimile de und a enrgiei radiante emise prin nclzirea corpurilor. Aceast distribuie i gsete explicaia n cadrul teoriei cuantice a luminii , fundamentat de Planck (1900) . S-a stabilit astfel c un flux de unde luminoase , de orice frecven , se comport ( mai ales n unele fenomene speciale , cum este efectul fotoelectric ) ca u flux discontinuu , alctuit din particule de lumin , numite fotoni , a cror energie de micare este h ( h fiind constanta lui Planck ). S-a dovedit de altfel c nu numai domeniul vizibil , ci ntreg domeniul existent al undelor electromagnetice posed proprieti corpusculare ". Dar n timp ce n domeniul infrarou ( mici ) , aspectul corpuscular se manifest att de slab , nct experimental de obicei de obicei el nici nu apare vizibil , predominnd aspectul ondulator" , la frecvene foarte mari , n ultraviolet , de exemplu aspectul corpuscular apare foarte evident , radiaiile comportndu-se practic ca un flux de fotoni. n domeniul vizibil ambele aspecte au pondere aproape egal , experien;a punnd n eviden cnd proprietile ondulatorii (interferena , difracia) , cnd proprietile corpusculare ale luminii ( efectul fotoelectric , de exemplu ). Aadar , radiaiile luminoase sunt unde electromagnetice care au proprietatea de a impresiona retina ochiului.. Ele posed att proprieti ondulatorii , ct i proprieti corpusculare .

Observaie. Pn la descoperirea fotonului relaiile n = v2 / v1 (Newton) i n = v1 / v2 (Huygens) preau incompatibile . n teoria electromagnetic a luminii , care admite dualismul corpuscul-und a fenomenului luminos , aceast dificultate dispare. Pentru aceasta trebuie doar s nelegem c una din relaii conine vitezele particulelor de lumin , considerat ca un flux de particule , n timp ce cealalt relaie conine vitezele undelor de lumin , considerat ca o und electromagnetic. S presupunemc lumina trece din vid ( unde viteza ei este c ) ntr-un mediu de indice de refracie n. n teoria fotonic ( corpuscular ) , dac viteza fotonilor n mediul dat este v , vom avea n = v / c. n teoria electromagnetic ( ondulatorie ) , dac notm cu u viteza undelor luminoase n mediul dat , vom avea n = c / u. Aadar : uv = c2 Aceast relaie este acum relativ uor de explicat. Astfel , n teoria fotonic lumina const din particule (fotoni) de mas m (mas de micare") ce se mic cu viteza v i posed o und asociat , de o lungime de und : Folosind E = h v = mc2 , obinem : Pe de alt parte , considernd lumina ca o und de vitez u i frecven avem : Ultimele dou relaii conduc la uv = c2 , relaie ce rezult cum am vzut , din faptul c att teoria corpuscular ct i cea ondulatorie trebuie s furnizeze aceiai valoare pentru indicele de refracie n , care se poate determina experimental , direct , n afara teoriei. Aceast relaie pune n eviden o strlucit sintez ntre proprietile ondulatorii i corpusculare ce se manifest deosebit de pregnant n cazul luminii. O astfel de sintez nu putea fi prevzut de vechile teorii mecaniciste ; cunoaterea ei este un rezultat al fizicii cuantice , aprut la nceputul acestui secol.

Fotonul Edit

In urma studiului radia;iei emise de corpurile nclzite (radiaiile termice) , s-a constatat experimental c orice corp nclzit emite o radiaie electromagnetic care este cu att mai intens cu ct temperatura corpului este mai ridicat. De asemenea se cunoate c , corpurile nclzite trec prin diverse coloraii ( rou , portocaliu , galben , alb , alb-albastru ) cu creterea temperaturii . Nici o explicaie bazat pe teoria ondulatorie a luminii nu a condus la aceast dependen. M. Planck n 1900 a reuit s dea o explicaie corect , dar pentru acesta a fost nevoit s introduc relatia = hv, n care h este constanta lui Planck , v frecvena radiaiei emise , iar energia minim a radiaiei de frecven ce se poate pierde sau ctiga. El a numit acest proprietate , cuantificarea energiei radiante , iar = hv -- cuant de energie . n 1905 A.Einstein folosete noiunea de cuant pentru a explica efectul fotoelectric. Dar revoluionar n aceast explicaie este faptul c Einstein nelege prin cuanta hv nu numai o porie " minim de energie , ci i o individualitate a ei , care i confer proprieti de particul. n acest fel cuanta hv poate ciocni un electron ca o veritabil particul , explicnd pe aceast cale efectul fotoelectric. Pin foton sau cuant de energie radiant nelegem azi cantitatea elementar de energie a unei radiaii , dat de formula de mai sus , care posed unele proprieti de particul cum ar fi : impulsul i masa de micare . Cu alte cuvinte fotonul reprezint cea mai mic cantitate de energie a unei radiaii de frecven dat , ce poate fi emis sau absorbit de substan.

Resurse Edit

Vezi şi Edit

Also on Fandom

Random Wiki