Joseph-Louis Lagrange

\left  (\sum_{i=1}^n a^2_i \right ) \cdot \left  (\sum_{i=1}^n b^2_i \right )  =\left  (\sum_{i=1}^n a_i b_i \right )^2 + \sum_{1\le i < j \le n} (a_i b_j - a_j b_i )^2

unde a_i \in \mathbb C, \; \forall i \in \overline {1, n} şi b_i \in \mathbb C, \; \forall i \in \overline {1, n}.

Relaţia este un caz particular al identităţii Binet–Cauchy.

Caz particular Edit

Considerăm vectorii \vec a (a_x, a_y, a_z), \vec b (b_x, b_y, b_z). \!


(a_yb_z - a_zb_y)^2+ (a_zb_x-a_xb_z)^2+ (a_xb_y-a_yb_x)^2 + \!
+ (a_xb_x+ a_yb_y+a_zb_z)^2= (a_x^2+a_y^2+a_z^2)(b^2_x+b^2_y+b^2_z). \!

Identităţi similare Edit

\sum_{1 \le i<j \le n} (a_i - a_j) (b_i - b_j) = n \sum_{i=1}^n a_i b_i - \left ( \sum_{i=1}^n a_i \right ) \cdot \left ( \sum_{i=1}^n b_i \right ) .

\sum_{1 \le i<j \le n} (a_i + a_j) (b_i + b_j) = (n-2) \sum_{i=1}^n a_i b_i + \left ( \sum_{i=1}^n a_i \right ) \cdot \left ( \sum_{i=1}^n b_i \right ) .

Vezi şi Edit

Ad blocker interference detected!

Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.

Also on FANDOM

Random Wiki