Math Wiki

Identitatea lui Jacobi

1.032pages on
this wiki
Add New Page
Comments0 Share

Dacă \vec a, \vec b, \vec c \in V_3, \! atunci:

\vec a \times (\vec b \times \vec c) + \vec b \times (\vec c \times \vec a) + \vec c \times (\vec a \times \vec b) = \vec 0 \! (identitatea lui Jacobi)


\vec a\times (\vec b \times \vec c) + \vec b \times (\vec c \times \vec a ) + \vec c \times (\vec a \times \vec b) = \!
= (\vec a \cdot \vec c)  \vec b - (\vec a \cdot \vec b) \vec c + (\vec b \cdot \vec a) \vec c - (\vec b \cdot \vec c) \vec a + (\vec c \cdot \vec a) \vec b - (\vec c \cdot \vec b) \vec a= \vec 0. \!


Dacă F este o formă biliniară: F: V \times V \rightarrow V \! pe spațiul vectorial V, \! atunci:

F(F(x,y),z) + F(F(y,z),x) + F(F(z,x),y) = 0 \; \forall \, x,y,z \in V. \!

Vezi şi Edit

Resurse Edit

Ad blocker interference detected!

Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.

Also on Fandom

Random Wiki