Fandom

Math Wiki

Identitatea Botez-Catalan

1.030pages on
this wiki
Add New Page
Comments0 Share

Una din formulările identităţii Botez-Catalan este:

1- \frac 1 2 + \frac 1 3 - \frac 1 4 + \cdots - \frac{1}{2n} = \frac{1}{n+1} + \frac{1}{n+2} + \cdots + \frac {1}{2n}, \; \forall n \ge 1. \!

O formulare echivalentă este următoarea:

\frac {1}{n+1} + \frac {1}{n+2} + \cdots + \frac{1}{2n+1} = 1- \frac 1 2 \left ( \frac {1}{1 \cdot 3} + \frac {1}{2 \cdot 5} + \cdots + \frac {1}{n(2n+1)} \right ), \; \forall n \ge 1. \!

Demonstraţia se face prin inducție matematică.

Vezi şi Edit

Resurse Edit

Ad blocker interference detected!


Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.

Also on Fandom

Random Wiki