În cadrul supematematicii, funcțiile trigonometrice circulare pot fi generalizate prin funcţiile trigonometrice excentrice:

Sinusul excentric Edit

sex_{1, 2} (\theta, S) = \sin \{ \theta \mp \arcsin [s \cdot \sin (\theta - \varepsilon)] \}= \!
= -s \cos \theta \sin (\theta - \varepsilon) \pm \sqrt {1-s^2 \sin^2 (\theta- \varepsilon)} \!


sex_{1, 2} (x, S) = \sin \{ x \mp \arcsin [s \cdot \sin (x-z)] \} = \!
= -s \cdot \cos x \cdot \sin(x-z) \pm \sqrt{1-s^2 \cdot \sin^2 (x-z)} \!

Cosinusul excentric Edit

cex_{1, 2}(\theta, S) = \cos \{ \theta \mp \arcsin [s \cdot \sin (\theta - \varepsilon)] \}= \!
= s \cdot \sin \theta \cdot \sin (\theta- \varepsilon) \pm \sqrt {1-s^2 \cdot \sin^2(\theta- \varepsilon)} \!


cex_{1, 2} (x, S) = \cos \{ x \mp \arcsin [s \cdot \sin (x-z)] \} =  \!
= s \cdot \sin x \sin (x-z) \pm \sqrt {1-s^2 \cdot \sin^2 (x-z)}. \!
Graficele functiilor excentrice

Graficele funcţiilor trigonometrice excentrice:
-stânga: cex_1 \theta \! (roşu) şi cex_2 \theta \! (albastru) sus şi c2ex_{12} \theta \! (jos)
-dreapta: sex_1 \theta \! (roşu) şi sex_2 \theta \! (albastru) sus şi s2ex_{12} \theta \! (jos)
pentru S (s \in [0, 1], \; \varepsilon =0) \!

Resurse Edit

Ad blocker interference detected!

Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.

Also on FANDOM

Random Wiki